ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ РЕСПУБЛИКИ БЕЛАРУСЬ (ГОССТАНДАРТ)

STATE COMMITTEE FOR STANDARDIZATION, METROLOGY AND CERTIFICATION OF THE REPUBLIC OF BELARUS (GOSSTANDART)

СЕРТИФИКАТ

ОБ УТВЕРЖДЕНИИ ТИПА ГОСУДАРСТВЕННОГО СТАНДАРТНОГО ОБРАЗЦА

CERTIFICATE OF PATTERN APPROVAL OF STATE REFERENCE MATERIAL

HOMEP CEPTUOUKATA: CERTIFICATE NUMBER:

53

ΔΕЙСТВИТЕЛЕН ΔΟ: VALID TILL:

29 декабря 2004 г.

Настояший сертификат удостоверяет, что на основании решения НТК по метрологии Госстандарта (протокол №10 от 29.12.1999 г.) утверждены типы

государственных стандартных образцов состава токсичных элементов в пишевых продуктах, сельскохозяйственном сырье и биологических объектах для атомно-эмиссионного спектрального анализа (комплект 2),

разработанные Институтом прикладной оптики НАНБ, г. Могилев, Республика Беларусь (ВҮ),

которые зарегистрированы в Государственном реестре средств измерений (раздел "Стандартные образцы состава и свойств веществ и материалов") под номерами СО РБ 03 0084 99 – СО РБ 03 0099 99 и допущен к применению в Республике Беларусь.

Описание типа ГСО приведено в приложении и является неотъемлемой частью настоящего сертификата.

Председатель Госстандарта

В.Н. КОРЕШКОВ29 декабря 1999 г.

АННУЛИРОВАН

ОПИСАНИЕ ТИПА ГОСУДАРСТВЕННОГО СТАНДАРТНОГО ОБРАЗЦА СОСТАВА ТОКСИЧНОГО ЭЛЕМЕНТА В ПИЩЕВЫХ ПРОДУКТАХ, СЕЛЬСКОХОЗЯЙСТВЕННОМ СЫРЬЕ И БИОЛОГИЧЕСКИХ ОБЪКТАХ ДЛЯ АТОМНО-ЭМИССИОННОГО СПЕКТРАЛЬНОГО АНАЛИЗА

(для Государственного реестра средств измерений Республики Беларусь)

ГСО состава токсичного элемента в пищевых продуктах, сельскохозяйственном сырье, биологических объектов для атомно-эмиссионного спектрального анализа (комплект № 2)

ВНЕСЕН В ГОСУДАРСТВЕННЫЙ РЕЕСТР СРЕДСТВ ИЗМЕРЕНИЙ РЕСПУБЛИКИ БЕЛАРУСЬ

Раздел «Стандартные образцы состава и свойств веществ и материалов Регистрационные номера

СО РБ 03.0084.99 – СО РБ 03.0099.99

ВЫПУСКАЕТСЯ по техническим условиям ТУ РБ 05882080-002-2000 «Стандартные образцы для количественного определения токсичных элементов в продуктах питания, продовольственном сырье, почвах, биологических и водных объектах» и технологической инструкции по производству СО.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ: Стандартный образец состава токсичного элемента для эмиссионного спектрального анализа (комплект) предназначен для градуировки, метрологической аттестации и поверки атомно-эмиссионных спектральных приборов, метрологической аттестации методик выполнения измерений (МВИ), контроля показателей точности измерений МВИ, измерения концентраций токсичных элементов в пищевых продуктах, сельскохозяйственном сырье, биологических объектах методом сравнения. Не использовать данные ГСО при анализах, требующих перевода образцов в жидкое состояние.

ОПИСАНИЕ: СО состава токсичного элемента изготовлен в соответствии с техническими условиями и представляет собой сухую смесь минеральных веществ, в которую внесено дозированное количество токсичного элемента в виде химического соединения.

Состав матрицы (основы) СО, масс.%: углерод 35, оксид магния 2,0, углекислый кальций 14,0, дигидрофосфат калия 40,0, сернокислый калий 6,0, сернокислый натрий 0,5, хлористый натрий 1,5, азотнокислый барий 1,0.

Стандартный образец расфасован в стеклянный флакон, закрытый полиэтиленовой пробкой. Масса фасовки - 1 г. На флакон наклеена этикетка с индексом СО. Комплект СО в количестве 16 шт. упакован в картонную коробку, на которую нанесена этикетка в соответствии с СТБ 8005.

НОРМИРУЕМЫЕ МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ: Наименование аттестуемых характеристик, аттестованные значения и погрешности аттестованных значений СО приведены в таблицах 1 и 2.

Допускаемые значения характеристики токсичных элементов в СО

Таблица 1

Индекс	Аттестуемый	Допускаемое	Индекс	Аттестуемый	Допускаемое
стандартного	элемент	значение	стандартного	элемент	значение
образца		характеристики	образца		характеристик
		токсичного			и токсичного
		элемента в СО,			элемента в СО,
		мг/кг			мг/кг
ЖЛС-100	железо	95-105	ЖЛС-5000	железо	4800-5200
МДС-100	медь	95-105	МДС-5000	медь	4800-5200
КДС-100	кадмий	95-105	КДС-5000	кадмий	4800-5200
ЦНС-100	цинк	95-105	ЦНС-5000	цинк	4800-5200
CBC-100	свинец	95-105	CBC-5000	свинец	4800-5200
ОЛС-100	олово	95-105	ОЛС-5000	олово	4800-5200
МШС-100	мышьяк	95-105	МШС-5000	мышьяк	4800-5200
PTC-100	ртуть	92-105	PTC-5000	ртуть	4800-5200

Относительная погрешность аттестованной характеристики токсичного элемента в CO при доверительной вероятности 0,95:

Таблица 2

Индекс	Аттестуемый	Относительная	Индекс	Аттестуемый	Относительная
стандартного	элемент	погрешность	стандартного	элемент	погрешность
образца		значения	образца		значения
		аттестованной			аттестованной
1		характеристики			характеристики,
		%			%
ЖЛС-100	железо	±3,0	ЖЛС-5000	железо	±3,0
МДС-100	медь	±3,5	МДС-5000	медь	±2,5
КДС-100	кадмий	±3,5	КДС-5000	кадмий	±2,5
ЦНС-100	цинк	±3,0	ЦНС-5000	цинк	±2,5
CBC-100	свинец	±3,4	CBC-5000	свинец	±3,0
ОЛС-100	олово	±5,0	ОЛС-5000	олово	±4,0
МШС-100	мышьяк	±3,4	МШС-5000	мышьяк	±3,0
PTC-100	ртуть	±5,0	PTC-5000	ртуть	±5,0

Срок годности экземпляра СО (кроме РТС) 3 года. Срок годности экземпляра СО РТС - 2 года.

РАЗРАБОТЧИК СО: Институт прикладной оптики Национальной Академии наук Беларуси (ИПО НАНБ). 212793, г.Могилев, ул.Бялыницкого-Бирули, 11.

ИЗГОТОВИТЕЛЬ СО: Институт прикладной оптики НАН Беларуси, 212793, г. Могилев, ул. Бялыницкого-Бирули, 11, тел/факс (0222) 26-46-49.

Директор ИПО НАН Беларуси

Научный руководитель разработки

В.П.Редько

А.Г.Непокойчицкий