ОПИСАНИЕ ТИПА СТАНДАРТНОГО ОБРАЗЦА

СТАНДАРТНЫЙ ОБРАЗЕЦ СОСТАВА ИСКУССТВЕННОЙ ГАЗОВОЙ СМЕСИ УГЛЕВОДОРОДНЫХ ГАЗОВ (УГ-Ю-0)

ГСО 10871-2017

Назначение стандартного образца: передача единицы молярной доли утвержденного типа стандартным образцам 1 и 2-го разряда; поверка, калибровка, градуировка средств измерений, а также контроль метрологических характеристик при проведении их испытаний, в том числе с целью утверждения типа; аттестация методик (методов) измерений; контроль точности результатов измерений, полученных по методикам (методам) в процессе их применения в соответствии с установленными в них алгоритмами.

Область промышленности, производства, где преимущественно может применяться стандартный образец: контроль технологических процессов, атмосферного воздуха и промышленных выбросов.

Описание стандартного образца: стандартный образец представляет собой (далее - СО) искусственную газовую смесь углеводородных газов, а также инертных и постоянных газов и серосодержащих соединений в баллонах под давлением.

Типы применяемых баллонов (в зависимости от компонентов и их содержаний в газовой смеси):

- баллоны из углеродистой или легированной стали по ГОСТ 949-73;
- баллоны из нержавеющей стали 12X18H10T, 03X17H14M2, 03Х17Н14М3 по ΓΟCT 5632-72;
- баллоны из алюминиевого сплава по ТУ 1411-016-03455343-2004;
- баллоны бесшовные из алюминиевого сплава АА6061.

Баллоны должны быть оборудованы запорными вентилями из нержавеющей стали типа ВС-16, ВС-16Л, ВС-16М или их аналогами. Вместимость баллонов от 1 дм^3 до 10 дм^3 . Давление в баллонах от 0,1 МПа до 15 МПа (в зависимости от типа баллона и приготавливаемой газовой смеси).

Исходные вещества, применяемые для приготовления стандартных образцов, приведены в

Таблита 1

Исходное	Хим.	Нормативные документы,
вещество	формула	которым должны соответствовать
Кислород		исходные вешества
Кислород	O_2	Fluka №00476, TY 2114-001-05798345-2007,
Apport		<u>ΓΟCT</u> 5583-78
Аргон	Ar	Aldrich №295000, TY 2114-005-05798345-2009
Азот	N_2	Fluka №00474, TY 2114-009-45905715-2011,
T) H		ГОСТ 9293-74
Гелий	He	Fluka №00488, TУ 0271-001-45905715-02,
		ТУ 0271-135-31323949-2005
Водород	H_2	Fluka №00473, TY 2114-016-78538315-2008,
		ΓΟCT P 51673-2000
Оксид углерода	CO	Aldrich №295116, TY 6-02-7-101-86
Циоксид углерода	CO ₂	Aldrich №295108, ГОСТ 8050-85

Продолжение таблицы 1

Исходное вещество	Хим. формула	Нормативные документы, которым должны соответствовать	
Синтетический воздух	-	исходные вещества ТУ 6-21-5-82, ГОСТ17433-80	
Этилен	C ₂ H ₄	Fluka №00489, ΓΟCT 25070-87	
Этан	C ₂ H ₆	Fluka №00582	
Пропилен	C ₃ H ₆	Aldrich №295663	
Циклопропан	C ₃ H ₆	Aldrich №295183	
Пропан	C ₃ H ₈	Aldrich №536172	
1-бутен	C ₄ H ₈	Aldrich №744042	
Метан	CH ₄	Aldrich №463035, TV 51-841-87	
2- метилпропан	i-C ₄ H ₁₀	Aldrich №539821	
Метилацетилен	C ₃ H ₄	Aldrich №295493	
Пропадиен	C ₃ H ₄	Aldrich №294985	
1,3-бутадиен	C ₄ H ₆	Aldrich №743828	
Сероводород	H_2S	Aldrich №295442	
Карбонилсульфид	COS	Aldrich №295124	
н-бутан	C ₄ H ₁₀	Aldrich №494402	
цис-2-бутен	cis-C ₄ H ₈	Aldrich №400890	
транс-2-бутен	trans-C ₄ H ₈	Aldrich №295086	
2-метилпропен	i-C ₄ H ₈	Fluka №58552	
Этилацетилен	C_4H_6	Aldrich №633755	
,2-диметилпропан	neo-C ₅ H ₁₂	Chemos №629084	
Метантиол	CH₃SH	Aldrich №295515	
н-пентан	C_5H_{12}	Aldrich №236705	
2-метилбутан	i-C ₅ H ₁₂	Fluka №59060	
1-пентен	C ₅ H ₁₀	Fluka №76969	
цис-2- пентен	cis-C ₅ H ₁₀	Aldrich №143766	
гранс-2-пентен	trans-C ₅ H ₁₀	Aldrich №111260	
Этантиол	C ₂ H ₅ SH	Fluka №80534	
Ацетилен	C ₂ H ₂	ГОСТ 5457-75	
Циклопентан	C ₅ H ₁₀	Fluka №29680	

Окончание таблицы 1

Исходное Хим.		Нормативные документы,
вещество	формула	которым должны соответствовать
Organia describi		исходные вещества
Оксид этилена	C ₂ H ₄ O	Aldrich №743593
н-гексан	C ₆ H ₁₄	Aldrich №34859
1-гексен	C ₆ H ₁₂	Fluka № 52930
2,2-диметилбутан	C ₆ H ₁₄	Fluka №39730
3-метилпентан	C ₆ H ₁₄	Fluka №68320
2,3-диметилбутан	C ₆ H ₁₄	Fluka №39760
Бензол	C ₆ H ₆	Fluka №12540
Метанол	CH₃OH	Aldrich №34860
Циклогексан	C_6H_{12}	Aldrich №650455
н-гептан	C ₇ H ₁₆	Aldrich №246654
Метилциклогексан	C ₇ H ₁₄	Fluka №66294
3-метилгексан	C_7H_{16}	Aldrich №M49801
2-метилгексан	C ₇ H ₁₆	Aldrich №M49704
2,2-диметиллентан	C ₇ H ₁₆	Aldrich №110671
н-октан	C_8H_{18}	Fluka №74820
1,3-диметилбензол	m-C ₈ H ₁₀	Fluka №95670
,2-диметилбензол	o-C ₈ H ₁₀	Fluka №95660
,4-диметилбензол	p-C ₈ H ₁₀	Fluka №95680
Этилбензол	C_8H_{10}	Fluka №03079
н-нонан	C ₉ H ₂₀	Fluka № 74250
н-декан	C ₁₀ H ₂₂	Fluka №30540

Форма выпуска: серийное периодически повторяющимися партиями производство.

Метрологические характеристики стандартного образца:

аттестуемая характеристика: молярная доля компонента, %; нормированные метрологические характеристики СО приведены в таблице 2.

Таблица 2 – Нормированные метрологические характеристики СО (УГ-Ю-0)

Определяемый компонент	Интервал допускаемых (номинальных)	Относительная расширенная
	значений молярной доли*, %	неопределенность** при коэффициенте охвата k = 2, %
Кислород (O_2) , аргон (Ar) , азот (N_2) , гелий (He) , водород (H_2) , оксид углерода (CO) , диоксид углерода (CO_2) , синтетический воздух (air) , этилен (C_2H_4) , этан (C_2H_6) , пропилен (C_3H_6) , циклопропан (C_3H_6) , пропан (C_3H_8) , 1-бутен (C_4H_8) , метан (CH_4) , 2-метилиропан (C_3H_4) , метилацетилен (C_3H_4) , пропадиен (C_3H_4) , 1,3-бутадиен (C_4H_6) , сероводород (H_2S) , карбонилсульфид (COS)	св. 70 до 99,9 св. 50 до 70 св. 20 до 50 св. 10 до 20 св. 1 до 10 св. 0,1 до 1 св. 0,01 до 0,1 св. 0,001 до 0,01 св. 0,0001 до 0,001	*** 0,2 0,4 0,6 0,8 1 1,2 3 5
н-бутан (C_4H_{10}), цис-2-бутен (cis- C_4H_8), транс-2-бутен (trans- C_4H_8), 2-метилпропен (i- C_4H_8), этилацетилен (C_4H_6), 2,2-диметилпропан (neo- C_5H_{12}), метантиол (CH_3SH)	св. 20 до 50 св. 10 до 20 св. 1 до 10 св. 0,1 до 1 св. 0,01 до 0,1 св. 0,001 до 0,01 св. 0,0001 до 0,001 от 0 до 0,0001	0,4 0,6 0,8 1 1,2 3 5
н-пентан (C_5H_{12}), 2-метилбутан (i- C_5H_{12}), 1-пентен (C_5H_{10}), цис-2-пентен (cis- C_5H_{10}), транс-2-пентен (trans- C_5H_{10}), этантиол (C_2H_5SH)	св. 10 до 20 св. 1 до 10 св. 0,1 до 1 св. 0,01 до 0,1 св. 0,001 до 0,01 св. 0,0001 до 0,001 от 0 до 0,0001	0,6 0,8 1 1,2 3 5
Ацетилен (C_2H_2), циклопентан (C_5H_{10}), оксид этилена (C_2H_4O)	св. 10 до 12,5 св. 1 до 10 св. 0,1 до 1 св. 0,01 до 0,1 св. 0,001 до 0,01 св. 0,0001 до 0,001 от 0 до 0,0001	0,6 0,8 1 1,2 3 5
н-гексан (C_6H_{14}), 1-гексен (C_6H_{12}), 2,2-диметилбутан (C_6H_{14}), 3-метилпентан (C_6H_{14}), 2,3-диметилбутан (C_6H_{14})	св. 1 до 5 св. 0,1 до 1 св. 0,01 до 0,1 св. 0,001 до 0,01 св. 0,0001 до 0,001 от 0 до 0,0001	0,8 1 1,2 3 5
Бензол (C_6H_6), метанол (CH_3OH), циклогексан (C_6H_{12})	св. 1 до 3 св. 0,1 до 1 св. 0,01 до 0,1 св. 0,001 до 0,01 св. 0,0001 до 0,001 от 0 до 0,0001	0,8 1 1,2 3 5

Окончание таблицы 2

Определяемый компонент	Интервал допускаемых (номинальных) значений молярной доли*, %	Относительная расширенная неопределенность* при коэффициенте
н-гептан (C_7H_{16}), метилциклогексан (C_7H_{14}), 3-метилгексан (C_7H_{16}), 2-метилгексан (C_7H_{16}), 2,2-диметилпентан (C_7H_{16})	св. 1 до 1,5 св. 0,1 до 1 св. 0,01 до 0,1 св. 0,001 до 0,01 св. 0,0001 до 0,001 от 0 до 0,0001	охвата k = 2, % 0,8 1 1,2 3 5
н-октан (С ₈ Н ₁₈)	св. 0,1 до 0,4 св. 0,01 до 0,1 св. 0,001 до 0,01 св. 0,0001 до 0,001 от 0 до 0,0001	1 1,2 3 5
$1,3$ -диметилбензол (m- C_8H_{10}), $1,2$ -диметилбензол (o- C_8H_{10}), $1,4$ -диметилбензол (p- C_8H_{10}), этилбензол (C_8H_{10})	св. 0,1 до 0,2 св. 0,01 до 0,1 св. 0,001 до 0,01 св. 0,0001 до 0,001 от 0 до 0,0001	1 1,2 3 5
н-нонан (С ₉ Н ₂₀)	св. 0,01 до 0,1 св. 0,001 до 0,01 св. 0,0001 до 0,001 от 0 до 0,0001	1,2 3 5
н-декан (С ₁₀ Н ₂₂)	св. 0,1 до 0,5 св. 0,01 до 0,1 св. 0,001 до 0,01 св. 0,0001 до 0,001 от 0 до 0,0001	1 1,2 3 5

Примечания:

** Соответствует границам относительной погрешности при доверительной вероятности Р=0,95. Зависимость значений относительной расширенной неопределенности (границ относительной погрешности) от значений молярной доли определяемого компонента линейная.

*** Расширенная неопределенность рассчитывается по формуле: квадратный корень из суммы квадратов стандартных неопределенностей остальных компонентов смеси, умноженный на k (k=2) с последующим переводом в относительную форму.

Характеристики допускаемых отклонений молярной доли определяемого компонента от номинальных значений приведены в таблице 3.

Таблипа 3

Интервал номинальных значений СО (молярная доля, %)	Допускаемое относительное отклонение не более ±Д, %
от 1.10-4 до 1.10-3	50
св. $1 \cdot 10^{-3}$ до $5 \cdot 10^{-3}$	30
св. 5·10 ⁻³ до 1·10 ⁻² св. 1·10 ⁻² до 0.1	20
ов. 1 10 до 0,1	15

^{*} Интервал допускаемых значений молярной доли компонента, приведенный с указанием значения расширенной неопределенности, является интервалом допускаемых аттестованных значений. Интервал допускаемых значений молярной доли компонента, приведенный без указания значения расширенной неопределенности, является интервалом допускаемых справочных значений. По согласованию с заказчиком справочные значения могут не указываться в паспорте СО.

Окончание таблицы 3

Интервал номинальных значений СО (молярная доля, %)	Допускаемое относительное отклонение не более ±Д, %
св. 0,1 до 1	7
св. 1 до 10	
св. 10 до 20	3
св. 20 до 50	2
св. 50 до 70	2
св. 70 до 90	2
св. 90 до 99	2
св. 99 до 99,9	0,5 0,05

Срок годности экземпляра 12 месяцев.

Знак утверждения типа: наносится печатным способом в правом нижнем углу первого листа паспорта.

Комплектность стандартного образца: экземпляр стандартного образца, паспорт, инструкция по хранению и эксплуатации.

Документы, устанавливающие требования к стандартному образцу:

1. Техническая документация, по которой выпущен (будет выпускаться) стандартный образец:

ТУ 2114-001-72689906-2014 «Смеси газовые поверочные – стандартные образцы состава. Технические условия».

На общие метрологические и технические требования: ГОСТ Р 8.776-2011 «Стандартные образцы состава газовых смесей. Общие метрологические и технические требования»

2. Документы, определяющие применение стандартного образца:

На методики (методы) измерений (испытаний): ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия» и др.

На методики поверки (калибровки): МИ 2402-97 «Хроматографы газовые аналитические лабораторные. Методика поверки» и др.

3. Нормативный документ на государственную поверочную схему:

ГОСТ 8.578-2014 «ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах». В соответствии с ГОСТ 8.578 разряд СО соответствует нулевому.

4. Периодичность актуализации технической документации на тип стандартного образца: один раз в пять лет.

Номер экземпляра (партии), дата выпуска: представлен в целях утверждения типа экземпляр СО, баллон № 0800, 28.08.2016 г.

Изготовитель: Общество с ограниченной ответственностью «Югра-ПГС» (ООО «Югра-ПГС»), 628400, РФ, Тюменская область, ХМАО-Югра, г. Сургут, Сосновая ул., дом 74/1; Заявитель: Общество с ограниченной ответственностью «Югра-ПГС» (ООО «Югра-ПГС»), 628400, РФ, Тюменская область, ХМАО-Югра, г. Сургут, Сосновая ул., дом 74/1.

Испытательный центр: Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева»); 190005, г. Санкт-Петербург, Московский пр., 19, аттестат аккредитации в области обеспечения единства измерений № RA.RU.310494, выдан 09.09.2014 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев расшифровка подписи

*O*2 2017 г.

Amb