ОПИСАНИЕ ТИПА СТАНДАРТНОГО ОБРАЗЦА

УТВЕРЖДЕННОГО ТИПА СТАНДАРТНЫЙ ОБРАЗЕЦ СОСТАВА ИСКУССТВЕННОЙ ГАЗОВОЙ СМЕСИ В ПРОПАНЕ (C₃H₈-Ю-0)

ΓCO 10571-2015

ДОКУМЕНТЫ, устанавливающие требования к метрологическим и техническим характеристикам и выпуску из производства:

ТУ 2114-001-72689906-2014 «Смеси газовые поверочные - стандартные образцы состава. Технические условия».

ГОСТ Р 8.776-2011 «Стандартные образцы состава газовых смесей. Общие метрологические и технические требования».

Периодичность актуализации технической документации на тип стандартного образца один раз в пять лет.

ФОРМА ВЫПГУСКА: серийное постоянное непрерывное производство.

НОМЕР ЭКЗЕМПЛЯРА (ПАРТИИ), ДАТА ВЫПУСКА: № 64040; 21.09.2014.

НАЗНАЧЕНИЕ:

- поверка, калибровка, градуировка средств измерений, а также контроль метрологических характеристик при проведении их испытаний, в том числе с целью утверждения типа;
- аттестация методик (методов) измерений;
- контроль точности результатов измерений, полученных по методикам (методам) измерений в процессе их применения в соответствии с установленными в них алгоритмами.

СФЕРА ПРИМЕНЕНИЯ:

- область применения: контроль технологических процессов и промышленных выбросов.
- сфера государственного регулирования: осуществление деятельности в области охраны окружающей среды; выполнение работ по обеспечению безопасных условий и охраны труда; осуществление мероприятий государственного контроля (надзора).

ДОКУМЕНТЫ, определяющие применение:

- на методики (методы) измерений (анализа, испытаний): ГОСТ 13320 81 «Газоанализаторы промышленные автоматические. Общие технические условия» и др.
- на методики поверки (калибровки): МИ 2402-97 «Хроматографы газовые аналитические лабораторные. Методика поверки» и др.

ОПИСАНИЕ: Стандартный образец представляет собой искусственную газовую смесь в газе-разбавителе пропане (C_3H_8). Определяемые компоненты — сероводород (H_2S), CH_3SH (метилмеркаптан), C_2H_5SH (этилмеркаптан). Газ-разбавитель — пропан. Смесь находится под давлением ($0.5-10\ M\Pi a$) в баллоне из металлокомпозитного материала по

ТУ 7551-002-23204567-99, а также алюминиевых баллонах типа Luxfer, снабженном латунным вентилем, либо вентилем из нержавеющей стали.

Таблица 1. Исходные газы, применяемые для приготовления СО:

Исходное вещество	Нормативные документы,	
	которым должны соответствовать исходные	
	вещества	
C_3H_8	ТУ 51-882-90	
H_2S	Aldrich Product № 295442	
CH ₃ SH	Sigma-Aldrich Pr. № 295515	
C ₂ H ₅ SH	Aldrich Product № E3708	

НОРМИРОВАННЫЕ МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

Аттестованная характеристика – молярная доля компонента, %; Таблица 2. Нормированные метрологические характеристики

Наименование	Интеррет отполно	O=====================================
	Интервал аттестованных	Относительная
аттестуемой характеристики	значений (Х)*	расширенная
		неопределенность
		(U, %)**
		при коэффициенте
		охвата k = 2
Молярная доля сероводорода $({ m H}_2{ m S}), \%$	от 0,000010 до 0,00010	$U = -5555556 \cdot X + 58,556$
	св. 0,00010 до 0,0010	$U = -1111,1 \cdot X + 4,11$
	св. 0,0010 до 0,10	$U = -15,15 \cdot X + 3,015$
	св. 0,10 до 0,50	$U = -2,25 \cdot X + 1,725$
	св. 0,5 до 20	$U = -0.0154 \cdot X + 0.608$
	св. 20 до 70	$U = -0.004 \cdot X + 0.38$
	св. 70 до 97	$U = -0,0022 \cdot X + 0,2556$
	св. 97 до 99	0,04
	от 0,000010 до 0,00010	$U = -555556 \cdot X + 58,556$
Молярная доля	св. 0,00010 до 0,0010	$U = -1111,1 \cdot X + 4,11$
метилмеркаптана	св. 0,0010 до 0,10	$U = -15,15 \cdot X + 3,015$
(CH ₃ SH), %	св. 0,10 до 0,50	$U = -2,25 \cdot X + 1,725$
	св. 0,50 до 10	0,6
	от 0,000010 до 0,00010	$U = -555556 \cdot X + 58,556$
Молярная доля	св. 0,00010 до 0,0010	$U = -1111, 1 \cdot X + 4, 11$
этилмеркаптана	св. 0,0010 до 0,10	$U = -15,15 \cdot X + 3,015$
(C ₂ H ₅ SH), %	св. 0,10 до 0,50	$U = -2,25 \cdot X + 1,725$
	св. 0,50 до 4,0	0,6
Молярная доля пропана (С ₃ Н ₈)	остальное	

^{*}Х – значение молярной доли определяемого компонента.

^{**} — соответствует границам относительной погрешности ($\pm\Delta_0$) при доверительной вероятности (P=0.95).

Таблица 3. Характеристики пределов допускаемого отклонения

Интервал аттестованных значений СО (молярная доля, %)	Пределы допускаемого относительного отклонения ±Д, %
от 0,000001 до 0,0001	100
св. 0,0001 до 0,001	от минус 50 до плюс 100
св. 0,001 до 0,1	50
св. 0,1 до 1,0	20
св. 1,0 до 10	5
св. 10 до 50	3
св. 50 до 99	1

СРОК ГОДНОСТИ ЭКЗЕМПЛЯРА: 12 месяцев.

Место и способ нанесения знака утверждения типа на сопроводительные документы стандартного образца: печатным способом в правом нижнем углу первого листа паспорта.

ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ: Аттестованные значения СО прослеживаются к Государственному первичному эталону единиц молярной доли массовой концентрации компонентов в газовых средах (ГЭТ 154-2011).

В соответствии с ГОСТ 8.578-2008 «ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах» СО выполняет функцию рабочего эталона 0-го разряда.

РАЗРАБОТЧИКИ: - Федеральное государственное унитарное предприятие «ВНИИМ им. Д.И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева»), 190005, Россия, г. Санкт – Петербург, Московский пр., д. 19;

- Общество с ограниченной ответственностью «ЮГРА-ПГС» (ООО «ЮГРА-ПГС»), 628400, РФ, Тюменская область, ХМАО-Югра, г. Сургут, Сосновая ул., дом 74/1.

ИЗГОТОВИТЕЛЬ: - Общество с ограниченной ответственностью «ЮГРА-ПГС» (ООО «ЮГРА-ПГС»), 628400, РФ, Тюменская область, ХМАО-Югра, г. Сургут, Сосновая ул., дом 74/1.

Заместитель

Руководителя Федерального агентства по техническому регулированию

и метрологии

<u>С.С.Голубев</u> расшифровка подписи

03

2015 г.