ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО СТАНДАРТИЗАЦИИ РЕСПУБЛИКИ БЕЛАРУСЬ

STATE COMMITTEE FOR STANDARDIZATION OF THE REPUBLIC OF BELARUS

СЕРТИФИКАТ

ОБ УТВЕРЖДЕНИИ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

PATTERN APPROVAL CERTIFICATE OF MEASURING INSTRUMENT

HOMEP CEPTUOUKATA: CERTIFICATE NUMBER: 5674

АННУЛИРОВАН

Настоящий сертификат удостоверяет, что на основании положительных результатов государственных испытаний утвержден тип

ИК-преобразователь для измерения концентрации компонентов газовых смесей МПО 32,

НИРУП "Минский НИИ радиоматериалов", г. Минск, Республика Беларусь (ВҮ),

который зарегистрирован в Государственном реестре средств измерений под номером **РБ 03 09 3955 09** и допушен к применению в Республике Беларусь с 29 января 2009 г.

Описание типа средства измерений приведено в приложении и является неотъемлемой частью настоящего сертификата.

Канцелярия

Заместитель Председателя комитета

С.А. Ивлев

29 января 2009 г.

НТК по метрологии **Госста**ндарта

2 9 AHB 2009

секретарь НТК Я Месе

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЯ ДЛЯ ГОСУДАРСТВЕННОГО РЕЕСТРА

УТВЕРЖДАЮ Директор Белорусского Учесударственного инсти

есударственного института метрологии Н.А. Жагора

Mour 2009

ИК-ПРЕОБРАЗОВАТЕЛИ ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ КОМПОНЕНТОВ ГАЗОВЫХ СМЕСЕЙ МПО 32

Внесены в Государственный реестр средств измерений Республики Беларусь

Регистрационный № РБ 03 09 3955 09

Выпускают по ТУ ВУ 100428401.158-2009.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

ИК-преобразователи для измерения концентрации компонентов газовых смесей МПО 32 (десятельное и предназначены для измерения концентрации O2, CO2, N2O и анестетика в газовых смесях. Используются в качестве газоанализатора в составе медицинских газовых мониторов или совместно с ПЭВМ.

ИК-преобразователи для измерения концентрации компонентов газовых смесей МПО 32 применяются для проведения измерений концентрации газов в условиях операционной, отделений реанимации, интенсивной терапии и других отделений медицинских учреждений, а также в различных отраслях промышленности.

ОПИСАНИЕ

Принцип действия ИК-преобразователей основан на поглощении ИК-излучения молекулами измеряемых газов во вдыхаемой и выдыхаемой смесях. ИК-излучение, проходя через измерительную кювету, поглощается в области характеристических пиков спектра поглощения газа, в результате чего меняется ток фотоприемника. Изменение этого тока характеризует величину концентрации газа в дыхательной смеси. Одновременно с измерением концентрации газов в смеси осуществляется контроль расхода и давления и последующее преобразование их в электрические сигналы постоянного тока. По результатам измерений тока фотоприемника, расхода и давления газа осуществляется вычисление параметров дыхания пациента и представление их в цифровом и граническом виде на экране медицинского газового монитора.

Место нанесения знака поверки указано в Приложении.

Внешний вид ИК-преобразователя представлен на рисунке 1.

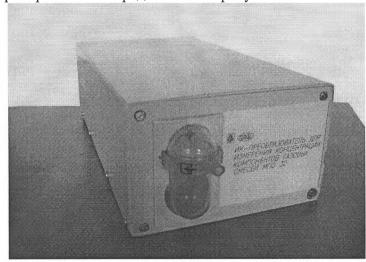


Рисунок 1. ИК-преобразователь для измерения концентрации компонентов газовых смесей МПО 32

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ И МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные технические и метрологические характеристики ИК-преобразователя представлены в таблице 1.

Таблина 1

Характеристика	Значение
Диапазон измерения концентрации кислорода О2, об. доля, %	от 0 до 100
Пределы допускаемой основной абсолютной погрешности (Δ_0) измерения	
концентрации кислорода О2, об. доля, %	±3,0
Диапазон измерения концентрации углекислого газа СО2, об. доля, %	от 0 до 10
Пределы допускаемой основной абсолютной погрешности (Δ_0) измерения	
концентрации углекислого газа СО2, об. доля, %	±0,5
Диапазон измерения концентрации закиси азота N ₂ O об. доля, %	от 0 до 100
Пределы допускаемой основной абсолютной погрешности (Δ_0) измерения	
концентрации закиси азота N ₂ O, об. доля, %	±3,0
Диапазон измерения концентрации анестетика (галотан) об. доли, %	от 0 до 5
Пределы допускаемой основной абсолютной погрешности (Δ_0) измерения	
концентрации анестетика (галотан), об. доля, %	±0,2
ход пробы газовой смеси, мл/мин	70±7; 120±12;
	150±15; 200±20
Время установления выходного сигнала (T_{10} -90%, расход 200 мл/мин), мс, не	
более	600
Пределы допускаемой дополнительной погрешности от изменения	
температуры окружающего воздуха от нормального значения (плюс 20 °C) на	
каждые 10 °C в интервале рабочих температур	±0,5Δ _o
Предел допускаемой вариации выходного сигнала	$0.5\Delta_{\rm o}$
Питание преобразователя осуществляется от внешнего источника питания	
напряжения постоянного тока напряжением, В	12±1,2
Потребляемая мощность, Вт, не более	10,0
Габаритные размеры, мм, не более	150×270×110
Масса, кг, не более	3,0

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносят на переднюю панель прибора методом офсетной печати, на льный лист руководства по эксплуатации и паспорта типографским способом.

КОМПЛЕКТНОСТЬ

Комплект поставки ИК-преобразователя указан в таблице 2.

Таблица 2

Tuominga 2	
Наименование	Количество
ИК-преобразователь для измерения концентрации компонентов газовых смесей	
МПО 32	1
Руководство по эксплуатации	1
Паспорт	1
Методика поверки МРБ МП.1914-2009	1 —
Упаковка	1

ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 12.2.091-2002 "Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования".

ТУ ВҮ 100428401.158-2009 "ИК-преобразователь для измерения концентрации компонентов газовых смесей МПО 32. Технические условия".

МРБ МП.1914-2009 "ИК-преобразователь для измерения концентрации компонентов газовых смесей МПО 32. Методика поверки".

ЗАКЛЮЧЕНИЕ

ИК-преобразователи для измерения концентрации компонентов газовых смесей МПО 32 соответствуют требованиям ГОСТ 12.2.091, ТУ ВҮ 100428401.158-2009.

Межповерочный интервал — не более 12 месяцев, для ИК-преобразователей, предназначенных для применения, либо применяемых в сфере законодательной метрологии.

Научно-исследовательский центр БелГИМ г.Минск, Старовиленский тракт, 93, тел. 334-98-13 Аттестат аккредитации № В У/112 02.1.0.0025

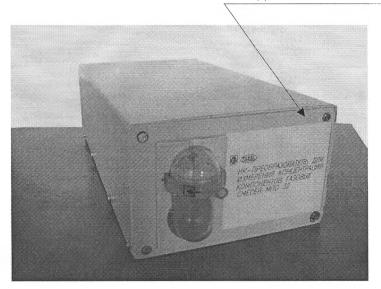
ИЗГОТОВИТЕЛЬ

НИРУП "Минский НИИ радиоматериалов", г. Минск, Адрес: 220024, г. Минск, ул. Кижеватова, 86.

Начальник научно-исследовательского центра испытаний средств измерений и техники РУП "БелГИМ"

С.В. Курганский

2009



приложение

Схема с указанием мест нанесения знака поверки в виде клейма-наклейки

Место нанесения знака поверки в виде клейма-наклейки

