ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО СТАНДАРТИЗАЦИИ РЕСПУБЛИКИ БЕЛАРУСЬ

STATE COMMITTEE FOR STANDARDIZATION OF THE REPUBLIC OF BELARUS

СЕРТИФИКАТ

ОБ УТВЕРЖДЕНИИ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

PATTERN APPROVAL CERTIFICATE OF MEASURING INSTRUMENTS

HOMEP CEPTUФИКАТА: CERTIFICATE NUMBER: 6253

ДЕЙСТВИТЕЛЕН ДО: VALID TILL:

28 января 2015 г.

Настоящий сертификат удостоверяет, что на основании положительных результатов государственных испытаний утвержден тип средств измерений

"Расходомеры массовые CFT50 с первичными преобразователями CFS10, CFS20",

изготовитель - фирма "Invensys Systems Inc.", США (US),

который зарегистрирован в Государственном реестре средств измерений под номером **РБ 03 07 4267 10** и допушен к применению в Республике Беларусь с 28 января 2010 г.

Описание типа средств измерений приведено в приложении и является неотъемлемой частью настоящего сертификата.

Заместитель Председателя комитета

С.А. Ивлев 28 января 2010 г.

НТК по метрологии Госстандарта

2 8 AHB 5010

секретарь НТК ЛЛССУ

ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ ДЛЯ ГОСУДАРСТВЕННОГО РЕЕСТРА

УТВЕРЖДАЮДиректор БелГИМ

— Н.А. Жагора

— 2010

Расходомеры массовые CFT50 с первичными преобразователями CFS10, CFS20

Внесены в Государственный реестр средств измерений

P6 03 07 426410

Выпускают по технической документации фирмы "Invensys Systems Inc.", США.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Расходомеры массовые CFT50 с первичными преобразователями CFS10, CFS20 (в дальнейшем — расходомеры) предназначены для измерения массового расхода, массы, плотности и температуры жидкости и газа.

Область применения - химическая, нефтехимическая, нефтяная, газовая, пищевая, фармацевтическая и другие отрасли промышленности.

ОПИСАНИЕ

Принцип действия расходомеров основан на воздействии сил Кориолиса, возникающих при одновременном поступательном и вращательном движениях измеряемой среды. Кориолисовы силы вызывают поперечные колебания трубопровода первичного преобразователя массового расхода (далее — преобразователя расхода), пропорциональные массовому расходу, что приводит к фазовому смещению частотных характеристик в трубопроводе преобразователя расхода, выполненном в виде петли.

Измерение плотности основано на измерении резонансной частоты колебаний трубопровода преобразователя расхода. Измерение температуры осуществляется с помощью термопреобразователя сопротивления. Объемный расход и объем определяются путем пересчета значения массового расхода, массы и плотности рабочей среды.

Микропроцессорный преобразователь CFT50 обеспечивает преобразование, обработку информации и индикацию измеренных и рассчитанных значений на дисплее.

Расходомеры могут применяться для измерения различных параметров потока жидкости и газа:

- для стандартных давлений жидкости и газа;
- для высоких давлений жидкости и газа;
- для высоких температур жидкости и газа;
- для жидкостей и газов, которые требуют периодической очистки рабочей полости преобразователя расхода;
- для стандартных давлений жидкости и газа, но со специальной конструкцией рабочей полости и корпуса преобразователя расхода.

Детали преобразователей расхода CFS10 и CFS20, контактирующие с измеряемой средой, могут быть изготовлены из нержавеющей стали, сплава "Hastelloy". Преобразователи расхода выпускаются также в специальном санитарном исполнении.

Внешний вид расходомеров представлен на рисунках 1, 2.

Место нанесения знака поверки (клейма-наклейки) указано в Приложении.

Рисунок 1 – Внешний вид первичного преобразователя расхода CFS10 и CFS 20

Рисунок 2 – Внешний вид микропроцессорного преобразователя CFT50

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ И МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные характеристики расходомеров представлены в таблице. Таблица

Полисования мараутаруатууч	Значение	
Наименование характеристики	CFS10	CFS20
1 Диаметр условных проходов (Ду), мм	3; 6; 15; 20; 25; 40; 50.	40; 80
2 Диапазон измерений массового расхода	0,033 (Ду 3мм),	4400 (Ду 40 мм),
жидкости и газа (в зависимости от Ду),	0,099 (Ду 6 мм),	181800 (Ду 80 мм)
кг/мин	0,440 (Ду 15 мм),	
	0,990 (Ду 20 мм),	
	1,8180 (Ду 25 мм),	
	4400 (Ду 40 мм),	
	7700 (Ду 50 мм)	
3 Пределы допускаемой основной		7/0> 100>#
относительной погрешности измерения	$\pm (0,10 + (Z/Q)x100)*$	
массового расхода жидкости, %		
4 Пределы допускаемой основной	$\pm(0.50 + (Z/Q)x100)*$	
относительной погрешности измерения		
массового расхода газа, %		
5 Дрейф нуля (в зависимости от Ду), кг/мин	$\pm 0,000016\pm 0,0340$	$\pm 0,0204; \ \pm 0,0907$
6 Диапазон измерений плотности (ρ), кг/м ³	2003000	
7 Пределы допускаемой абсолютной		
погрешности измерения плотности, г/см ³	±0,0005	
8 Выходные сигналы	4-20 мА,	
	цифровой (протокол HART, MODBUS),	
	импульсный или частотный	
9 Диапазон измерений температуры t, °С	-130+180	
10 Пределы допускаемой абсолютной погрешности измерения температуры, °С	±1 при -60 °C ≤ t < +100 °C	
	±3 при -130 °C ≤ t < -60 °C;	
-1.7	±3 при 100 °C ≤ t ≤180 °C	
11 Температура измеряемой среды, °С	-200+180	
12 Температура окружающей среды	-40+85 (CFS10, CFS20)	
(в зависимости от исполнения), °С	-20+80 (CFS10, CFS20) -40+60 (CFT50)	
10.17	-40+60	(CF150)
13 Пределы допускаемой дополнительной		
приведенной погрешности измерения	±0,0028	
массового расхода жидкости и газа при		
изменении температуры окружающего		
воздуха от (23±2) °С на 1 °С,		
% от диапазона	5100 без конденсации влаги	
14 Относительная влажность, %	<u>э100 оез кон,</u>	денсации влаги
15 Напряжение питания, В:		
- переменный ток номинальной частотой 50 Гц	230±23	
- постоянный ток	230±23 1036	
······································	10	
Примечание:		

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится типографским способом на титульный лист руководства по эксплуатации расходомера.

комплектность

Комплект поставки: расходомер, руководство по эксплуатации, методика поверки МРБ МП. 2002 - 2010.

ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Технические документация фирмы "Invensys Systems Inc"., США. MPБ МП. 2002 - 2010. Расходомеры массовые CFT50 с первичными преобразователями CFS10, CFS20. Методика поверки.

ЗАКЛЮЧЕНИЕ

Расходомеры массовые CFT50 с первичными преобразователями CFS10, CFS20 соответствуют документации фирмы "Invensys Systems Inc.",США.

Межповерочный интервал – не более 24 месяцев (при применении в сфере законодательной метрологии).

Научно-исследовательский испытательный центр БелГИМ. Аттестат аккредитации № BY/112 02.1.0.0025. г. Минск, Старовиленский тракт, 93, тел. 334-98-13.

Изготовитель: фирма "Invensys Systems Inc."

33 Commercial Street, Foxboro, MA 02035-2099, USA

Поставщик: ООО "Инвенсис Проусесс Системс", Звенигородское шоссе, 18/20 Москва, т.(095) 6637773, ф.(095) 6637774

Начальник научно-исследовательского центра испытаний средств измерений и техники БелГИМ

С.В.Курганский

Mas

Лист 4 из 5

Приложение (обязательное) Место нанесения знака поверки

