ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы вагонные рельсовые для взвешивания в движении ВРТ-03

Назначение средства измерений

Весы вагонные рельсовые для взвешивания в движении BPT-03 (далее – весы) предназначены для поосного измерения массы в движении железнодорожных вагонов и составов из них.

Описание средства измерений

Весы состоят из одного или нескольких грузоприемных устройств (далее - ГПУ) и персопального компьютера (ПК), установленного в помещении весовой. Каждое ГПУ включает в себя измерительный участок эксплуатируемого пути, на котором установлены два измерителя колесных нагрузок, кабели связи и адаптер.

Измерители колесных нагрузок (далее - ИКН) размещаются на рабочих рельсах в межшиальном пространстве и занимают по длине 300 мм. Кабели связи осуществляют не только передачу информации в ПК, но и питание ИКН напряжением от 6 до 12 В. ИКН гальванически развязаны и образуют взаимно независимые источники информации. Каждый ИКН включает в себя: четыре датчика деформации тензорезисторных, наклеенных понарно с двух сторон шейки рельса, четыре датчика температуры и плату преобразователя, находящуюся под подошвой рельса. Эти элементы герметично защищены кожухом из полимерных пластин. Под воздействием силы тяжести взвешиваемого груза происходит преобразование деформаций упругих элементов датчиков деформации тензорезисторных в аналоговый электрический сигнал, который поступает в плату преобразователя, где осуществляется его преобразование в нормализованные цифровые сигналы. Аналогичное преобразование осуществляется в ИКН второго рельса. Далее цифровые сигналы поступают в ПК, где обрабатываются в соответствии с заданным алгоритмом и результат взвешивания по различным параметрам запроса отображается на мониторе ПК.

Принцип действия весов основан на преобразовании аналоговых сигналов датчиков деформации рельса под действием колесной нагрузки в цифровые сигналы, которые обрабатываются по заданным алгоритмам программой «Весы ВРТ-03». По этим данным формируются масса вагонов, масса состава, масса его фрагментов и скорости их прохождения через измерительный участок пути.

В весах предусмотрены следующие основные устройства:

- устройство автоматической установки нуля;
- устройство слежения за нулем;
- устройство распознавания вагонов;
- устройство отображения и нечати.

Виды грузов: сухие сыпучие, твердые, а также жидкие с кинематической вязкостью не менее $59 \text{ mm}^2/c$.

Общий вид весов представлен на рисунке 1.

Форма условного обозначения весов: ВРТ-03 - Мах,

где ВРТ-03 - обозначение типа:

Мах - максимальная нагрузка, т

Pegopol U.U.

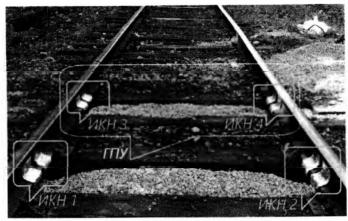
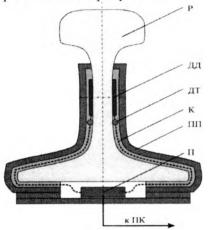



Рисунок 1 - Общий вид весов ВРТ-03 с двумя ГПУ

Общий вид ИКН представлен на рисунке 2.

Ш- датчик леформации **ИТ-** дагчик температуры кабель шестижильный ПП- пластина полимерная плата преобразователя

Рисунок 2 - Общий вид ИКН

Пломбирование ИКН весов не предусмотрено.

Программное обеспечение

Программное обеспечение (ПО) разделено на две части: метрологически значимое ПО и метрологически незначимое ПО.

Основные функции метрологически значимого ПО «Весы ВРТ-03» (программа WeightRSP.exe) сводятся к приему измерений, поступающих от двух ИКН на один СОМ-порт обработки их в реальном времени с целью идентификации проезжающих железнодорожных составов с учетом их типов, вычислению масс вагонов (метрологически значимые величины); скоростей просзда каждой оси через измерительный участок, осевых и колесных нагрузок (метрологически незначимые величины).

Метрологически значимое ПО идентифицируется по контрольной сумме CRC32, которая отображается при запуске в нижней части окна программы и может быть сверена с указанной в документе. Редактирование метрологически значимого ПО возможно лишь с применением специально закодированного USB-ключа типа HASP (ключа метролога HASP-METR). Ha этом же компьютере специальным (закрытым) образом хранится история измерений метрологических файлов вместе с их хэш-суммами. Программа WeightRSP.exe в начале загрузки проверяет соответствие значений хэш-сумм последних запомненных версий метрологических файлов их реальным значениям и отказывается от своей дальнейшей загрузки в случае их несовпадения.

Komme bepter Dupenry 000, CTATEPA"

Pegopel U. U.

Метрологически незначимое ПО «Весы ВРТ-03» сосредоточено в программе ViewerRW.exe. служащей для просмотра архивов и оформления результатов взвешивания по

различным параметрам запроса.

Каждое ГПУ снабжено одними и теми же программами измерений и идентификации. При комплектации весов более чем одним ГПУ запускается одновременно несколько программ ПО «Весы ВРТ-03» для каждой пары ИКН. В этом случае объединением результатов и их обработкой далее занимается метрологически незначимое ПО «Объединенный состав» (программа SumCimplit.exe).

Таблина 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	ПО «Весы ВРТ-03» (WeightRSP.exe)	
Номер версии (идентификационный номер) ПО	1.1.0.0	
Цифровой идентификатор ПО	DB46E908	
Алгоритм вычисления цифрового идентификатора ПО	CRC32	

Уровень защиты IIO соответствует среднему уровню по Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические и технические характеристики, включая показатели точности:

Таблица 2 – Метрологические характеристики весов

Наименование характеристики	Значение
Максимальная нагрузка весов (Мах), т	150, 200
Минимальная нагрузка весов (Min), г	10
Максимальная нагрузка на платформу (Мах _п), т	30
Минимальная нагрузка на платформу (Min _n), т	2
TY	

- Примечания
- 1 Максимальная нагрузка весов максимально допустимое значение массы вагона.
- 2 Минимальная нагрузка весов минимально допустимое значение массы вагона.
- 3 Максимальная нагрузка на платформу максимальное значение нагрузки для одного ГПУ

Действительная цена деления (d) в зависимости от Мах_п и классов точности при взвешивании в движении вагона приведены в таблице 3.

Таблица 3 - Действительная цена деления

Класс точности по ГОСТ 8.647-2015	d, кг	Количество делений шкалы
2	50	600
5	200	150

Таблица 4 - Пределы допускаемой относительной погрешности весов при первичной поверке при взвешивании в движении вагона в составе без расцепки

V roce sources re	Пределы допускаемой относительной погрешности в д	
Класс точности по ГОСТ 8.647-2015	от Min до 35 % Мах включ., % от 35 % Мах	св. 35 % Мах. % от измеряемой массы
2	±1,0	
5	±2,5	

Примечания

1 Пределы допускаемой относительной погрешности в эксплуатации соответствуют удвоенным значениям, приведенным в таблице 4.

2 При взвешивании вагона в составе без расцепки при первичной поверке не более 10 % полученных значений погрешности весов могут превынать пределы, приведенные в таблице 4, но не должны превышать пределы доржжаемой устасительной погрешности в эксплуатации.

«CTATEPA»

Dupennep ODC, CTATERA

Pegopol U.U.

Таблица 5 - Пределы допускаемой относительной погрешности весов при первичной поверке

при взвешивании в движении состава из вагонов в целом

V.	Пределы допускаемой относительной погрешности в дианазоне		
Класс точности по ГОСТ 8.647-2015	от Minm до 35 % Махт включ., % от 35 % Махт	св. 35 % Max ⁻ n, % от измеряемой массы	
2	±1.0		
5	±2,5		
Примечания 1 п – число контрольны	х вагонов в составе.		
2 Пределы допускаем	ой относительной погрешности в	эксплуатации соответствую	

Таблица 6 – Основные технические характеристики весов

удвоенным значениям, приведенным в таблице 5.

Таблица 6 – Основные технические характеристики вес	OB
Наименование характеристики	Значение
Особый диапазон рабочих температур ГПУ, °С	от -40 до +50
Диапазон рабочих температур ПК, °С	от +10 до +35
Максимальная рабочая скорость V _{max} , км/ч:	
- класс точности 2	10
- класс точности 5	4()
Минимальная рабочая скорость V _{min} , км/ч	1,5
Направление движения при взвещивании	двустороннее
Скорость движения при транзитном проезде по	
весам, км/ч	не ограничена
Количество ГПУ в составе весов	от 1 до 4
Габаритные размеры ГПУ, мм. не более	
(длина×ширина) для рельса Р65	300×1700
Габаритные размеры ИКН, мм, не более	
(длина×ширина)	300×165
Масса ИКН, кг, не более	2,2
Параметры электрического питания весов от сети	
переменного тока:	
- напряжение, В	от 187 до 242
- частота, Гц	от 49 до 51
Потребляемая мощность, В А, не более	2
Вероятность безотказной работы весов за 2000 часов,	
не менее	0,95
Средний срок службы, лет, не менее	10

Знак утверждения типа

наносится типографским способом на маркировочную табличку, закрепленную на кожухе системного блока ПК, и на титульный лист Руководства по эксплуатации.

Комплектность средства измерений

Таблица 7 - Комплектность средства измерений

Наименование	Обозначение	Количество
Весы в сборе	BPT-03	1 комплект
ПК с базовым ПО «Весы ВРТ-03»	-	1 комплект
ПО «Объединенный состав» (при комплектации весов двумя и более ГПУ)	1000	1 комплект
Руководство по эксплуатации весов	BPT-03-002-000 PЭ	1 экз.
Паспорт	BPT-03-002-000 FIC	1 экз.

Dupeury OCC GATEPASSO

Pegopol 4.21.

Поверка

осуществляется по Приложению А «Методика поверки вагонных автоматических весов» ГОСТ 8.647-2015 «Весы вагонные автоматические. Метрологические и технические требования. Методы испытаний».

Основные средства поверки – рабочие эталоны массы 4-го разряда по ГОСТ 8.021-2015 (весы неавтоматического действия) и контрольные вагоны, соответствующие требованиям ГОСТ 8.647-2015.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки в виде наклейки со штрих-кодом наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к весам вагонным рельсовым для взвешивания в движении ВРТ-03

ГОСТ 8.647-2015 Весы вагонные автоматические. Метрологические и технические требования. Методы испытаний

ГОСТ 8.021-2015 ГСИ. Государственная поверочная схема для средств измерения массы

ТУ 4274-002-12117842-2018 Весы вагонные рельсовые для взвешивания в движении ВРТ-03. Технические условия

Изготовитель

Общество с ограниченной ответственностью «СТАТЕРА» (ООО «СТАТЕРА»).

ИНН 6168062791

Адрес: 344103, г. Ростов-на-Дону, ул. Содружества, дом 39, корпус 2, кв. 96

Телефон: 8 (800) 222-70-61; (928) 762-95-37

E-mail: balance61@yandex.ru Web-сайт: http:statera.ooo

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ФГУП «СНИИМ»)

Адрес: 630004, г. Новосибирск, пр. Димитрова, 4 Телефон: (383) 210-08-14, факс: (383) 210-13-60

E -mail: director@sniim.ru

Аттестат аккредитации ФГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

М.п.

Заместитель

Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

2019 г.

Romer Coo CTATEPA «CTATEPA»

Pegopol U. U.

10.04. 20192